Biodiversity Loss new: Difference between revisions

From CRL Wiki
Jump to navigation Jump to search
Data organization for biodiversity
No edit summary
Line 4: Line 4:


=== Role of biodiversity ===
=== Role of biodiversity ===
Biodiversity is intrinsically connected to ecosystem health, acting as a the foundation for many natural systems. Greater species diversity not only facilitates increased productivity and complexity, but also builds ecosystem resilience. Compared to their more homogenous counterparts, biodiverse populations are better equipped to preserver to buffer against disturbances such as natural disasters, extreme weather events, and pressures from human related activity. The preservation of biodiversity has become even more crucial as our climate and landscape change at unprecedented rates. Healthy ecosystems provide a variety of [https://www.climatehubs.usda.gov/ecosystem-services#:~:text=Ecosystem%20services%20are%20the%20direct,support%20and%20sustain%20human%20livelihoods. ecosystem services] which are necessary for the well being of the global economy, environmental health, and life on earth. In 1998, economist Robert Costanza and colleagues estimated such services to generate $33 Trillion USD annually (approximately $64 T USD in 2024)<ref>Costanza, R., d'Arge, R., de Groot, R. ''et al.'' The value of the world's ecosystem services and natural capital. ''Nature'' 387, 253–260 (1997). <nowiki>https://doi.org/10.1038/387253a0</nowiki></ref>. Declining biodiversity threatens the integrity of systems that perform such services and by extension the industries, communities, and nations that rely on these services for their livelihood. Biodiversity at face value is an ecological metric, but also functions as a critical indicator for the well being of species, ecosystems, and many aspects of human life.
Biodiversity is intrinsically connected to ecosystem health, acting as a the foundation for many natural systems. Greater species diversity not only facilitates increased productivity and complexity, but also builds ecosystem resilience. Compared to their more homogenous counterparts, biodiverse populations are better equipped to preserver to buffer against disturbances such as natural disasters, extreme weather events, and pressures from human related activity. The preservation of biodiversity has become even more crucial as our climate and landscape change at unprecedented rates. Healthy ecosystems provide a variety of [https://www.climatehubs.usda.gov/ecosystem-services#:~:text=Ecosystem%20services%20are%20the%20direct,support%20and%20sustain%20human%20livelihoods. ecosystem services] which are necessary for the well being of the global economy, environmental health, and life on earth. In 1998, economist Robert Costanza and colleagues estimated such services to generate $33 Trillion USD annually (approximately $64 T USD in 2024)<ref>Costanza, R., d'Arge, R., de Groot, R. ''et al.'' The value of the world's ecosystem services and natural capital. ''Nature'' 387, 253–260 (1997). <nowiki>https://doi.org/10.1038/387253a0</nowiki></ref>. Declining biodiversity threatens the integrity of systems that perform such services and by extension the industries, communities, and nations that rely on these services for their livelihood. Biodiversity at face value is an ecological metric, but also functions as a critical indicator for the well being of species, ecosystems, and many aspects of human life. a


== Biodiversity Loss ==
== Biodiversity Loss ==

Revision as of 22:20, 8 September 2024

What is biodiversity?

Biodiversity refers to the variation of living organisms across ecosystems, populations, or geographic scales. The term can be measured using a variety of metrics including species richness/diversity, genetic diversity within or between species, and population demographics. Species richness refers to the total number of different species present within a specific region. Species diversity encompasses both the number of species (richness) and the relative abundance of each species within the population, providing a more comprehensive measure of biodiversity within that region but often requiring additional labor. Genetic diversity refers to the variety of genes within a population or between populations of the same species. This metric can be used to compare the genetic variability within a single species across different populations or to contrast the gene pools of different species, offering insights into evolutionary processes and the overall health of ecosystems. Population demographics refer to the variation in physical or demographic traits such as age, size, sex, reproductive status, etc, within or between biological populations.

Role of biodiversity

Biodiversity is intrinsically connected to ecosystem health, acting as a the foundation for many natural systems. Greater species diversity not only facilitates increased productivity and complexity, but also builds ecosystem resilience. Compared to their more homogenous counterparts, biodiverse populations are better equipped to preserver to buffer against disturbances such as natural disasters, extreme weather events, and pressures from human related activity. The preservation of biodiversity has become even more crucial as our climate and landscape change at unprecedented rates. Healthy ecosystems provide a variety of ecosystem services which are necessary for the well being of the global economy, environmental health, and life on earth. In 1998, economist Robert Costanza and colleagues estimated such services to generate $33 Trillion USD annually (approximately $64 T USD in 2024)[1]. Declining biodiversity threatens the integrity of systems that perform such services and by extension the industries, communities, and nations that rely on these services for their livelihood. Biodiversity at face value is an ecological metric, but also functions as a critical indicator for the well being of species, ecosystems, and many aspects of human life. a

Biodiversity Loss

Observed trends

Biodiversity loss refers to the reduction or disappearance of biological diversity, including the loss of species, habitats, and genetic diversity within ecosystems. This phenomenon is a significant environmental concern, as biodiversity plays a crucial role in maintaining the balance and health of ecosystems.

While biodiversity naturally fluctuates over time as ecosystems change and species adapt like many aspects of ecology, recent trends indicate a worrying acceleration in biodiversity loss. Historically, species extinction occurs at a rate of approximately ten percent every million years[2]. However, recent data suggests that the current rate of extinction and biodiversity decline far exceeds historical averages[3]. Some scientists argue that this rapid decline could be the early stages of a mass extinction event, potentially the sixth in the history of life on Earth.

As a result of climate change and human development, the biodiversity of ecosystems throughout the world has been declining. In 2022, the World Wildlife Fund’s Living Planet Report found that populations of measured vertebrate species have declined by an average of 69 % since 1970 [4]. This is in large part due to the repurposing of native habitats for human needs, like crop and livestock production. Poaching of already endangered species, deforestation, and overfishing are direct human activities that contribute to the loss of organismal populations. Climate change has only exacerbated these problems, resulting in habitat loss after climate disasters, water pollution, and rising temperatures that increasingly make lands and waters uninhabitable to native species. These factors combine to cause population decline or extinction of biological life.

The primary causes of biodiversity loss include (add references here: might be this one https://www3.weforum.org/docs/WEF_New_Nature_Economy_Report_2020.pdf See Fig. 3):

  • Habitat Destruction: The alteration or destruction of natural habitats due to human activities such as deforestation, urbanization, and agriculture.
  • Climate Change: Changes in climate patterns can alter habitats and ecosystems, making them inhospitable for certain species.
  • Pollution: Pollution of air, water, and soil can harm wildlife and plant species.
  • Overexploitation: Excessive hunting, fishing, and harvesting of species can lead to their decline or extinction.
  • Invasive Species: Non-native species introduced to an ecosystem can outcompete native species for resources.

The loss of biodiversity can have far-reaching consequences, including:

  • Ecosystem Instability: Reduced biodiversity can lead to weakened ecosystem resilience and functionality.
  • Loss of Services: Ecosystems provide essential services like pollination, water purification, and climate regulation. Biodiversity loss can impair these services.
  • Economic Impact: Many industries, such as agriculture and pharmaceuticals, rely on biodiversity. Its loss can have economic repercussions.

Efforts to mitigate biodiversity loss include:

  • Protected Areas: Establishing and managing protected regions to conserve habitats and species.
  • Sustainable Practices: Promoting sustainable agriculture, forestry, and fishing to reduce environmental impact.
  • Conservation Programs: Implementing species-specific conservation programs and breeding endangered species in captivity.
  • Policy and Legislation: Enacting laws and policies to protect biodiversity and regulate activities that contribute to its loss.

Projected Biodiversity Loss

Increasing efforts to measure and preserve biodiversity have aided in the understanding of how this valuable resource will change in the future, however, concrete estimates on future biodiversity decline are limited. Current estimates from an expert panel indicate that if trends continue, an estimated 37% of species could be under threat or extinct by the year 2100[5]. Over the coming decades, climate change is expected to play a larger role in biodiversity loss. As carbon emissions increase, temperature and habitat change will decrease nature's ability to sequester carbon and perform ecosystem services, thus feeding back into the cycle. The largest influence over this change is how countries and organizations across the world respond to the crisis. At current rates, biodiversity is predicted to continue falling at catastrophic rates. In their 2022 Living Planet Report, the World Wildlife Fund outlined their hope for a net positive impact on biodiversity by 2050 relative to a 2010 baseline. This pathway included an aggressive change in conservation measures alongside new sustainable consumption and development practices.

Risk and Impacts of Biodiversity Loss or "Risk assessment of biodiversity loss"

Calculating the financial risk from biodiversity loss involves analysing how the degradation of biodiversity and ecosystem services could affect the economy, assets, and livelihood of communities or businesses on a local, national, or global scale. In order to calculate the current and potential impact, biodiversity trends need to be leveraged with corresponding financial models, quantifying a community or industry's reliance on biodiversity and ecosystem services. Sectors like fisheries, agriculture, ecotourism, forestry, and pharmaceuticals are all heavily dependent on the consumption of ecosystem services. The decline of such resources can result in commodity, supply chain, and business continuity risks.

Physical Risks: Physical risk from biodiversity loss can impact any aspect of an industry supply chain. Commodity risks such as fishery or crop decline impact businesses at the core of their production process. Decreasing commodity supply can also result in supply chain risks as products have to be sourced from different locations. Damage risks from a degrading natural environment is also a possibility, a common example in coastal and riparian zones where biomass is a key buffer protecting property from storms and flooding. Value Risks can affect businesses or properties directly, as a changing ecosystem can decrease the value of real estate or lower revenue from ecotourism services.

Regulatory and Legal Risk: Many industries have to follow regulations set by local/governmental bodies. As the decline of biodiversity and key species worsens, these restrictions and the consequences for violating such rules are likely to become more severe. These regulations, laws, and certifications act as a driving force toward more sustainable behavior and often include incentives once completed but not without an added cost until that change is made.

Market Risk: A loss of biodiversity accompanied by awareness of physical and regulatory risk, or increased cost on consumers has the potential to shift entire markets. Recent data indicates that products indicating environmentally sustainable practices grew up to 17.5-24.5% over a period of three years[6].

[How biodiversity loss makes an impact: Figure 7 https://www3.weforum.org/docs/WEF_New_Nature_Economy_Report_2020.pdf]

Potential Data Use

https://journals.plos.org/sustainabilitytransformation/article?id=10.1371/journal.pstr.0000010



Habiat suitability index here https://drive.google.com/file/d/1KPMP6N2j-tZvqbSbnugVMPt6NJWjLzWT/view?usp=drive_link??


[List other datasets in this doc: https://docs.google.com/document/d/1aDrYXfmA1QRak59Xf-fQWAIKyD2lANKF4nnCFdiTta8/edit

Global Biodiversity Data

Indicies Description Data Access
Global Biodiversity Information Facility (GBIF) GBIF is an international data network that collects biodiversity related occurrence data from thousands of different sources including governments, museums, studies, journals, and popular consumer tools such as eBird and iNaturalist. The site contains vast amounts of data that can be refined to singular regions or species. GBIF Homepage

GBIF API Selection

GBIF Data Sources

Living Planet Index (LPI) The LPI is a large scale biodiversity database that collects information on documented vertebrate populations. It is a key component of the WWF Living Planet Report, which is produced by the World Wildlife Fund in collaboration with the Zoological Society of London and other partners. The Index provides insights into trends in global biodiversity by tracking changes in populations of vertebrate species over time. It is a valuable tool for understanding the impact of human activities on wildlife. The index tracks population trends of thousands of vertebrate species, normalizing the data to account for variations in population size. The data spans from the year 1970 to the present, and describes vertebrate populations from locations across the globe. LPI Homepage

Summary Statistics LPI Data Download Request

IUCN Red List of Threatened Species The IUCN Red List of Threatened Species describes the global extinction risk status of plant, animal, and fungus species. It is managed by the International Union for Conservation of Nature, a global organization that works on environmental conservation and sustainable use of natural resources. The IUCN Red List assesses the conservation status of species based on criteria such as population size, distribution, and trends, placing them into one of seven threat categories: Least Concerned, Near Threatened, Vulnerable, Endangered, Critically Endangered, Extinct in the Wild, or Extinct. IUCN Homepage

Selection Process

Summary Statistics

Mammal Dataset

Biodiversity Heritage Library (BHL) The BHL is a publically available online repository of biodiversity related literature with entries dating back to 1469 CE. The library includes a wide range of scientific media such as studies, journals, and catalogues that provide data on biodiversity related topics ranging in scale. In addition to data, these resources can inform specific aspects of biodiversity on a case by case basis. BHL Homepage
United States Geographical Survey (USGS)

Data Tools

The USGS builds and contributes to a variety of biodiversity related tools and indices. These include the Tagged Animal Movement Explorer, GBIF, Amphibian and Reptile Species Distribution Explorer, Integrated Taxonomic Information Systems, the US Protected Areas Database, the World Terrestrial Ecosystems Explorer, and the US Introduced and Invasive Species Map. USGS Biodiversity Tool Selection
Earth Science Data Systems (ESDS) Program Earth Data, by NASA, is a satellite based remote monitoring tool which collects data into four main categories: vegetation characteristics, spectroscopy, human impacts, and species distribution. Data from these categories can be fine tuned to assist in the analysis of many sustainability challenges including air quality, agriculture and water management, biological diversity and ecological conservation, water quality, and many more. Biological Diversity and Ecological Conservation Data Pathfinder
UN Biodiversity Lab The UN Biodiversity Lab is an open source spatial data tool that combines data from a variety of sources including satellites, scientists, and indigenous communities to construct a global modeling tool. Layers can be applied to filter data interests toward almost any conservation goal, ranging from water scarcity to above ground woody carbon density to chlorophyll concentration in sea water and many more. UN Biodiversity Lab Map
Habitat Suitability Index

Finance Related Biodiversity Data

Indicies Description Data Access
ENCORE ENCORE (Exploring Natural Capital Opportunities, Risks and Exposure), is a free to access financial analysis tool designed to evaluate and present the dependency of various industries on biodiversity and ecosystem services, as well as potential impact in the face of biodiversity loss. A standout feature of ENCORE is the ability to analyze an industry's reliance on a specific ecosystem service, which is then ranked from VH (very high), to L (low). Additionally, ENCORE leverages spatial data to create a global mapping interface customized toward several key ecosystem services. Each layer within this mapping tool provides a link to the source data. ENCORE Homepage

Methodology and Data Download

Others:

Research gaps: linking biodiversity loss directly to financial loss

References

  1. Costanza, R., d'Arge, R., de Groot, R. et al. The value of the world's ecosystem services and natural capital. Nature 387, 253–260 (1997). https://doi.org/10.1038/387253a0
  2. Hannah Ritchie (2022) - “There have been five mass extinctions in Earth's history” Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/mass-extinctions' [Online Resource]
  3. Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated Modern Human–induced Species losses: Entering the Sixth Mass Extinction. Science Advances, 1(5).
  4. Living Planet Report 2020 | Official Site | WWF. (2020). WWF; World Wide Fund For Nature. https://livingplanet.panda.org/en-us/
  5. Isbell, F., Balvanera, P., Mori, A. S., He, J., Bullock, J. M., Regmi, G. R., Seabloom, E. W., Ferrier, S., Sala, O. E., Guerrero‐Ramírez, N. R., Tavella, J., Larkin, D. J., Schmid, B., Outhwaite, C. L., Pramual, P., Borer, E. T., Loreau, M., Omotoriogun, T. C., Obura, D. O., & Anderson, M. (2022). Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 21(2). https://doi.org/10.1002/fee.2536
  6. https://nielseniq.com/wp-content/uploads/sites/4/2022/10/2022-10_ESG_eBook_NIQ_FNL.pdf

5. United Nations Environment Programme (UNEP) - Biodiversity